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Abstract — We introduce a novel method of cell detection and 

segmentation based on a polar transformation. The method assumes that 

the seed point of each candidate is placed inside the nucleus. The polar 

representation, built around the seed, is segmented using k-means 

clustering into one candidate-nucleus cluster, one candidate-cytoplasm 

cluster and up to three miscellaneous clusters, representing background or 

surrounding objects that are not part of the candidate cell. For assessing 

the natural number of clusters, the silhouette method is used. In the 

segmented polar representation, a number of parameters can be 

conveniently observed and evaluated as fuzzy memberships to the non-cell 

class, out of which the final decision can be determined. We tested this 

method on the notoriously difficult Pap-smear images and report results 

for a database of approximately 20000 patches. 

Keywords — Pap-smear images, Cell detection, Polar representation, 

k-means clustering, Fuzzy membership. 

I. INTRODUCTION 

One of the most widely used techniques for preparing medical 

samples in order to identify cervical cancer employs a staining 

technique developed by Papanicolaou [1], resulting in the so-called 

Pap smear images. The detection of cells from such cytological 

images, the first steps in the analysis of samples, is therefore a 
difficult but important problem for the medical community. 

Although there have been various attempts to automatically 

extract cells from Pap smear images, typically using methods 

involving thresholds [2][3], morphological operations [4][5] or 

gradient vector flow snakes [6][7], we think a different approach also 

merits consideration, namely one based on polar transforms around 

nuclei and k-means for segmentation. Polar representations have 

already been used in cell analysis. Angulo [8] used a log-polar 

transform in conjunction with morphological operations (skeleton) for 

the analysis of the shape of erythrocytes, while Nosrati et al. [9] 

employed the polar transform for the computation of directional 

derivatives in an attempt to separate overlapping cervical cells. Our 

study proposes the use of the polar transform not only as a convenient 

representation, but also as the basis for a dimensionality reduction, for 

unsupervised clustering and for feature extraction. In this study, seed 

points are selected by Rasche's et al. [10] method using geometric 

analysis of iso- and edge contours, but other seed points could 

possibly serve equally well. The segmentation provides for each 

candidate an estimate of the quasi-nucleus, the quasi-cytoplasm and 

other clusters (e.g. background sections, etc.) – quasi being used here 

to stress that not all candidates are cells therefore not all candidate 

images contain a nucleus or a cytoplasm. Several cell candidate 

parameters are then computed and their fuzzy membership to the non-
cell class is used to decide if the candidate is not a cell. 

The remainder of the paper is divided as follows: section II 

describes the database, section III describes the method of 

segmentation of candidate images, section IV describes the decision 

module and section V presents the results and perspectives. 

II. DATABASE 

Medical sample images are obtained with a scanner by 

VENTANA iScan Coreo, at an optic zoom of 40, generating images 

of approximately 75000 x 75000 pixels; at that resolution, a nucleus 

has a diameter between 30 and 60 pixels (depending on cell type) and 

a cell has a maximal diameter of 300 pixels. 

Using the iso-contours method on smear images from five 

subjects, a number of 20148 candidate images have been extracted: 

9405 actual cells (8399 of which are centred on the nucleus and 1006 

are centred outside the nucleus) and 10743 non-cells. Figure 1 shows 

six examples of candidate images (301x301 pixels). The green dot in 

the centre of each image, representing the seed for the proposed 

method, has been added artificially in order to enable easy human 
assessment. 

            
a. Superficial cell b. Overlapping superficial cells 

       
c. Intermediary cell d. Non-cell 

       
e. Cell seeded on cytoplasm f. Cell seeded on artefact 

Fig. 1. Cell candidate images with marked seeds (green dot).  
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III. SEGMENTATION OF CANDIDATE IMAGES 

Seed points are detected by the method described in Rasche et. al 

[10], by extracting iso-contours at different intensity levels - a method 

different from and faster than active contours. Most nuclei display an 

iso-contour but there are many other iso-contours in an image. In 

order to select iso-contours that represent potential nuclei candidates, 

a number of criteria are applied, such as minimum and maximum 
diameter, minimum contrast, a minimum degree of roundness etc.  

The automatic segmentation method proposed in this study is 
composed of three steps:  

o A. An image Cartesian-to-Polar transformation, re-dimensioning 

and the addition of a fourth pixel dimension; 

o B. k-means as the primary (unrefined) segmentation 

o C. Post-processing, including merging of clusters  

A. Image transformation 

The candidate images contain, in the ideal case, concentric layers 

(representing nucleus, cytoplasm and background) and therefore the 

polar transformation comes as a natural first step. The transformation 

itself does not introduce or uncover new information, but it re-

arranges the information in a way that makes further operations easier. 

Furthermore only pixels at certain positions (certain angles theta and 

certain distances d from the seed) are kept in the transformed image. 

These positions marked with magenta in Fig. 2. For most positions, 

the magenta points fall in-between pixels and therefore the nearest-

neighbour pixel values are picked. Although the bilinear interpolation 

gives a smoother appearance, it offers relatively little advantage over 

the nearest-neighbour approach. Compared to the bilinear 

interpolation, the nearest-neighbour approach results in more 

misclassified isolated pixels. However, these pixels are labelled black 

(unused) in step III.C and ignoring them does not change the 
indicators in chapter IV in any significant way. 

      
a. Candidate image b. Sampling points 

 
c. Polar transform of the re-sampled candidate image 

Fig. 2. Example of a Cartesian-to-Polar transform with marked 
sampling points (magenta) on the original image 

Using a set of 60 equally spaced angles and 36 distances, the 

number of pixels can be reduced from 90601 to just 2160 while at the 

same retaining the most significant elements of the image. The 

number of angles and distances are adjustable parameters of the 

proposed method, but the chosen values seemed to be sufficient for 

the current resolution. Since the most significant information is 

concentrated around the nucleus (and the nucleus is assumed to 

contain the seed), the selected distances become more sparse with 
distance from seed. 

In order to improve the k-means segmentation in step B, a fourth 

component is added pre-emptively to each pixel of the transformed 

image. The reason for the fourth value is to convey the information to 

the k-means clustering that, ideally, the top pixels form the nucleus, 

the middle pixels form the cytoplasm and the lower pixels form the 

background of the cell. Looking at the values   along any column of 

the transform image, the fourth dimension encourages pixels at very 

small or very large distances from the seed to classify naturally, while 

also gently increasing the Euclidian distance between the top and 

bottom pixels in the transformed image. The fourth dimension values 

are computed as values of a scaled logarithmic sigmoid, where    is 

the scaling factor and      is a linear function of distance to the seed:  

                 (1) 

The function   is given generic so that the values of the exponent 

can be adjusted according to the microscopic resolution of the 

scanner. In our case, the maximal radius of the cell is 150 pixels and 

the minimal radius of the nucleus is 30 pixels. Because the values of 

the RGB layers are scaled to the interval [0...1] for all further 

processing, the values of   obey the same constraints: 

                       (1.1) 

                          (1.2) 

                          (1.3) 

Small scaling factors    would have an unnoticeable effect on the 

segmentation because top and bottom pixels would have roughly the 

same 4th value, whereas large scaling factors    may overshadow the 

other three dimensions (the actual colour components of the pixels) 

and force an unnaturally ordered segmentation. Figure 3 shows the 

results of k-means clustering and the scaling factor chosen, as well as 

the effects of extreme (very small and very large) scaling factors.  

 

a. Polar transform b. Clustering with      

 

c. Clustering with         d. Clustering with      

Fig. 3. Example of a candidate image and the results of k-means 

clustering for various scaling factors    

The appropriate scaling factor    is computed by averaging the 

standard deviation of the uppermost 50% of the rows in the 

transformed image, since uneven rows with larger deviations require 

more forcing values on the 4th dimension. Factor    is capped at 0.6 to 

avoid the overshadowing of the colour dimensions. 



B. k-means clustering 

The 4D pixel array is clustered using the k-means for three values 

of k ( k=3, k=4 and k=5 ) because we expect at least three clusters, but 

we tolerate up to 2 more clusters of 'noise' regions. More than 5 

clusters leads to over-segmentation. For determining the optimal 

number of clusters, we have considered the silhouette method [11], 

denoted silmean in Fig. 4. 

 

a. Polar transform b.     ; silmean = 0.7383 

 

c.     ; silmean = 0.7228 d.     ; silmean = 0.6745 

Fig. 4. k-means clustering results for various number of classes k 

C. Post-processing 

This step consists of various morphological operations that further 
improve the clustering results.  

o Removal of unconnected areas. Considering that the cell should 

have the nucleus and cytoplasm in one connected area each, this 

step keeps for each cluster only the largest connected area and 

re-assigns any other group of pixels to label black (unused), 

represented as black in further images. For this step, the first and 

last columns of the transformed image are considered connected 

(since they represent consecutive sampling angles). 

o Merging of nucleus parts. If the centroids of the uppermost two 

clusters are close enough, they should merge. Also as part of this 

step, black areas engulfed by the nucleus are assigned the same 

label, the nucleus label. 

o Ordering of clusters. This step orders the clusters so that the 

uppermost cluster (usually the nucleus) is the darkest and the 

lowermost cluster (usually the whitish background) is the 

lightest. As decided at the previous step, the nucleus is the 

cluster with the lowest mean vertical position of the pixels 

(closest to the uppermost row). Cytoplasm is the cluster with the 

greatest contact to the nucleus. The other clusters are then sorted 

by the mean vertical position of the pixels. 

o Merging of cytoplasm parts. For the cytoplasm cluster 

determined at the previous step and each of the other clusters 

except the nucleus, the statistical mean and standard deviation of 

the red layer or the blue layer are computed (depending on the 

dominant colour of the nucleus). If the normalized distributions 

of the cytoplasm cluster and another cluster overlap 

significantly, the two clusters are merged. 

Figure 5 shows the full chain of processing and the results of 

segmentation operations for a given candidate cell. The final number 

of clusters after post-processing can be smaller than in the primary 
segmentation due to cluster merges. 

                

a. Candidate image b. Polar transform 

       

c. k-means clustering with     d. Removal of unconnected areas 

       

e. Ordering of clusters f. Merging of clusters 

Fig. 5. Processing chain for a candidate image: the computed 

scaling factor was         and the best average silhouette value 

silmean = 0.7322 was obtained by k-means with k = 4 clusters. 

 

IV. CELL DETECTION MODULE 

Once the segmentation has been completed, parameters useful to 

the decision making module can be extracted. The aim of the decision 

module is thus the identification of non-cells with the reasoning that 

anything that is not weird enough should be treated as an actual cell. 

There are two types of parameters: strong indicators and weak 

indicators that the candidate is a non-cell. For each indicator, we 

compute a membership value to the class non-cell μi. The final 

decision, described in section IV.C, is taken by comparing the 

aggregate of those membership values to a pre-defined threshold T. 

A. Extraction of strong indicators 

The strong indicators are: 

I1: Whiteness of the nucleus class 

I2: Whiteness of the cytoplasm class 
I3: Contrast between the nucleus class and the cytoplasm class 

These are considered strong indicators because any of them can 

single-handedly force the decision that the candidate is a non-cell, as 
described in the decision rule (section IV.C).  

For the strong indicators, the whiteness measure for both the 

nucleus class and the cytoplasm class is computed as the average 

between the red and blue layers of all pixels belonging to the 

respective class. The green layer is irrelevant when both red and blue 

layers have high values: a large value for green would make the pixels 

whitish and a low value for green would make the pixels magenta, but 

in both cases it would indicate that the candidate is a non-cell. The 

fuzzy membership to the non-cell class for the whiteness indicators is 
represented in Fig. 8.a. 

The contrast between the cytoplasm class and the nucleus class is 

simply the difference between the whiteness measures of the 

respective classes. The fuzzy membership to the non-cell class for the 
whiteness indicators is represented in Fig. 8.b. 



B. Extraction of weak indicators 

The weak indicators that the candidate is a non-cell are: 

I4: A radius estimation for the nucleus cluster 

I5: A measure of nucleus cluster roundness 

I6: A contact index between the nucleus and the cytoplasm cluster 

I7: The area ratio between the nucleus and the cytoplasm cluster 
I8: A nucleus colour index 

Ideally, the nucleus is round, but the centre of the candidate image 

is not necessarily the centre of the nucleus. The Power-of-a-point 

theorem (Euclid Elements, III.35) offers a convenient way of 

estimating the lower bound of the nucleus radius, as well as a way to 
compute a measure of the nucleus roundness.  

 
Fig. 6. Power-of-a-point theorem                      

For any point P inside a circle, the theorem states that any secant 

AD that contains point P will be divided into segments PA and PD 
whose product is constant, as shown in Fig. 6. 

However, due to the imperfection of the nucleus roundness, when 

computing the products of secant segments, the values may not match 

perfectly. We consider the mean (across all angles) of the square root 

of these products as our estimate for the radius. This value also is a 

lower bound for the real radius, in case the nucleus really is a perfect 

circle. The fuzzy membership to the non-cell class for the radius 
indicators is represented in Fig. 8.c. 

Also, the standard deviation of the square root of these products 

will be our measure for the roundness of the nucleus. If the nucleus is 

a perfect circle, the standard deviation should be very close to 0, due 

to the Power-of-a-point theorem, whereas nuclei with high 

eccentricity will give a large standard deviation value. These 

computations regarding the roundness of the nucleus are simplified 

due to the polar transformation. Since P is located at the uppermost 

row in the transformed image, segments corresponding to PA and PD 

are vertical distances from the top of the image to the edge of the 
nucleus class (separated by π on the x-axis), as shown in Fig. 7.  

 
Fig. 7. Representation of a nucleus secant in the polar transform 

The fact that the distances are not drawn to scale in the 

transformed image is taken into account by using distances from the 

original image (marked on the y-axis). Because there will be a greater 

variation for larger radii (due to the quantisation process of distances 

when applying the polar transform), the standard deviation is divided 

by the square root of the estimated radius (in order to allow a greater 

tolerance). The membership function to the non-cell class for the 
nucleus roundness is shown in Fig. 8.d. 

The contact index is computed as the number of angles for which 

there is contact between the nucleus class and the cytoplasm class, 

divided by the total number of angles taken into consideration. Once 

again, the computation of the contact is simplified due to the polar 

transformation. The membership function to the non-cell class for this 
parameter is shown in Fig. 8.e. 

Before we can compute the area ratio between the nucleus class 

and the cytoplasm class, we have to compute each area. Due to the 

segmentation and quantization, discrete points on the boundary of 

each class are known, so using Gauss’s area formula (also known as 

the Surveyor’s formula or Shoelace formula), the right answer can be 

extracted even from the distorted transformed image. The membership 

function to the non-cell class for this parameter is shown in Fig.8.f 

Finally, a nucleus colour index is giving information whether the 

supposed cell is tainted red, blue or undecided. If the mean values of 

the red and blue layers in the nucleus class are too close, then either 

the candidate is not a cell or is a superposition or conglomerate of 

cells. In both cases, the candidate is regarded as an artefact which 

cannot be properly analysed as a single cell. The membership function 
to the non-cell class for this parameter is shown in Fig. 8.g 

 
a. Fuzzy membership to class 

non-cell for the indicators I1 & I2 

(nucleus & cytoplasm whiteness) 

b. Fuzzy membership to class 

non-cell for indicator I3  

(the nucleus–cytoplasm contrast) 

 
c. Fuzzy membership to class 

non-cell for indicator I4  

(the estimated nucleus radius) 

d. Fuzzy membership to class 

non-cell for indicator I5  

(the nucleus roundness) 

 
e. Fuzzy membership to class 

non-cell for indicator I6  

(the contact index) 

f. Fuzzy membership to class 

non-cell for indicator I7  

(nucleus – cytoplasm area ratio) 

 
g. Fuzzy membership to class non-cell for indicator I8  

(the nucleus color index) 
Fig. 8. Fuzzy memberships to class non-cell for all indicators 



C. Final decision for the cell detection module 

For each candidate, we compute the membership values to class 

non-cell μi according to the strong indicators I1, I2 and I3 and the 

membership values to class non-cell μj according to the weak 
indicators I4 –  I8.  

The aggregate membership μ is the weighted sum of the fuzzy 

memberships for all indicators. Strong indicators are weighted with 

    , while weak indicators are weighted with        

        

      
          

 

       

    
          

 

 
(2) 

A candidate is deemed non-cell if the aggregate membership μ 

exceeds threshold T = 1: 

     : Non-cell 

    : Cell 

(3) 

Because     , each strong indicator can enforce the decision of 

non-cell alone, but weak indicator memberships are scaled down and 

thus need other partial memberships to add up to the threshold T. 

Figure 9 shows several candidates for which the decision was Cell or 
Non-cell as well as all corresponding indicator memberships.  

V. RESULTS AND PERSPECTIVES 

The segmentation and decision has been applied to ~20000 

candidate cells, approximately half of which had been manually 

labelled as non-cells. Furthermore, 1006 of the candidates labelled as 

cells have the seed in the cytoplasm (i.e. outside of the nucleus). 

In order to evaluate the performances of the method, we have 

chosen the following measures: 

TP = True positives = cells detected as cells 

TN = True negatives = non-cells detected as non-cells 

FP = False positives = non-cells detected as cells 

FN = False negatives = cells detected as non-cells  

Correct Detection Rate [%]: 

     
  

       
 

(4) 

Correct Rejection Rate [%]: 

     
  

       
 

(5) 

Total Success Rate [%]: 

                 (6) 

Table 1 presents the performances of the proposed method, 

considering two cases, when the cells that are not seeded in the 

nucleus are considered as part of class Cells and as Non-cells. 

Table 1. Performances of the proposed method 

 Considering cytoplasm 

seeds as cells 

Considering cytoplasm 

seeds as non-cells 
TP  

TN 

FP 

FN 

CDR[%] 

CRR[%] 

TSR[%] 

6652 

8362 

2381 

2753 

70.73 

77.84 

74.28 

6394 

9110 

2639 

2005 

76.13 

77.54 

76.83 

 
Decision: Cell 

μ = 0.0000 < T 

μ1 = 0.0000 

μ2 = 0.0000 

μ3 = 0.0000 

μ4 = 0.0000 

μ5 = 0.0000 

μ6 = 0.0000 

μ7 = 0.0000 

μ8 = 0.0000 

 
Decision: Cell 

μ = 0.1399 < T 

μ1 = 0.0000 

μ2 = 0.1399 

μ3 = 0.0000 

μ4 = 0.0000 

μ5 = 0.0000 

μ6 = 0.0000 

μ7 = 0.0000 

μ8 = 0.0000 

 
Decision: Cell 

μ = 0.9239 < T 

μ1 = 0.0000 

μ2 = 0.0000 

μ3 = 0.0000 

μ4 = 0.4703 

μ5 = 0.6846 

μ6 = 0.0000 

μ7 = 0.0000 

μ8 = 0.0000 

 
Decision: Non-Cell 

μ = 2.3720 > T 

μ1 = 0.0000 

μ2 = 0.0000 

μ3 = 0.0000 

μ4 = 1.0000 

μ5 = 0.3817 

μ6 = 0.5833 

μ7 = 1.0000 

μ8 = 0.0000 

 
Decision: Non-Cell 

μ = 1.5024 > T 

μ1 = 0.0000 

μ2 = 0.0000 

μ3 = 1.0000 

μ4 = 0.0000 

μ5 = 0.5447 

μ6 = 0.0833 

μ7 = 0.0000 

μ8 = 0.0000 

 
Decision: Non-Cell 

μ = 3.5817 > T 

μ1 = 1.0000 

μ2 = 1.0000 

μ3 = 1.0000 

μ4 = 0.0000 

μ5 = 0.0000 

μ6 = 0.0000 

μ7 = 0.0000 

μ8 = 0.7272 

Fig. 9. Examples of outputs for several candidates 

The segmentation method presented in this paper has a number of 

adjustable parameters (the number of angles and distances used in re-

dimensioning, the scaling factor for the fourth dimension of pixels, the 

type of distance for the adaptive k-means algorithm, merging rules, 

etc.) and one perspective would be to study the influence of these 

parameters on the overall classification. The resulting segmented 

image can be used to extract indicators whether the candidate is 
actually a cell or merely a non-cell. 

Although we have used fuzzy classes for the final decision, the 

modularity of the implementation allows for a variety of methods to 

be used in decision making. Furthermore, the number of indicators 

may be increased and finer classifications may be attempted. 
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